
Journal of Heredity, 2025, 116, 540–547
https://doi.org/10.1093/jhered/esaf019
Advance access publication 24 April 2025
Genome Resources

Received November 11, 2024; Accepted April 2, 2025

Genome Resources

A reference genome for boat-tailed grackles  
(Quiscalus major)
Eamon C. Corbett1,2,*, , Andre E. Moncrieff2, , Robb T. Brumfield1,2,  and Brant C. Faircloth1,2,

1Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
2Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States
*Corresponding author: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States. Email: eamonccorbett@gmail.com

Corresponding Editor: William Murphy

Abstract 
Boat-tailed Grackles (Quiscalus major) are marsh-dwelling blackbirds that are endemic to the eastern United States. Various aspects of their bi-
ology have been studied extensively, including their mating system, plumage and molt patterns, diet, and interspecific interactions. Boat-tailed 
Grackles are also interesting because they exhibit variation in their iris color that is associated with geography. However, resources that enable 
genomic studies of Boat-tailed Grackles and other related grackle species are few. Here, we combined Pacific Biosciences long-read, HiFi data 
with short-read Illumina data from a HiC library to produce haplotype-phased, chromosome-scale genome assemblies for Boat-tailed Grackles. 
The final version of the assembly, bQuiMaj1, includes two, contiguous haplotypes with total lengths of ~1 Gbp, N50s of ~70 Mbp, and L50s 
of 5-6. BUSCO and merqury analyses suggest both haplotypes are also relatively complete (95-99%) with respect to gene and k-mer content. 
The resulting assemblies will significantly enhance our understanding of Boat-tailed Grackle biology and physiology, as well as contribute to the 
growing number of genomes representing species belonging to the taxonomic family Icteridae (the New World blackbirds).
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Introduction
Boat-tailed Grackles (Icteridae: Quiscalus major) are marsh-
dwelling blackbirds that are endemic to the eastern United 
States (Post et al. 2020). They occur along the Atlantic and 
Gulf Coasts from Connecticut to Texas, as well as throughout 
the Florida peninsula. Various elements of Boat-tailed 
Grackle biology have been studied extensively, including their 
general life history (Coues 1870; McIlhenny 1937), mating 
system (female-defense polygyny, unusual in North American 
birds) (Selander and Giller 1961; Bancroft 1987; Post 1995; 
Poston 1997), nesting biology (Bancroft 1986), development 
(Bancroft 1984; Clum 1991), plumage and molt (Selander 
1958; Pratt 1974), vocalizations (Melman and Searcy 1999), 
diet (Snyder and Snyder 1969), interspecific interactions 
(Sprunt 1941; Jackson 1985; Post and Seals 1993), and dis-
tribution and conservation (Remsen et al. 2019; Summers et 
al. 2023). Boat-tailed Grackles are also remarkable because 
they exhibit pronounced geographic variation in iris colora-
tion (Fig. 1) between the four described subspecies (Stevenson 
1978), making them a good candidate system for examining 
the genetic basis of intraspecific eye color variation in birds 
(Corbett et al. 2024).

A high-quality genome assembly will enable genetic studies 
of Boat-tailed Grackle eye color variation, among other life 
history characteristics. Yet, genome assemblies for Icteridae are 
relatively few. Boat-tailed Grackles and Great-tailed Grackles 

(Q. mexicanus) have long been the focus of research regarding 
their genetic differences (Avise and Zink 1988), zones of sec-
ondary contact (Pratt 1974; Pratt et al. 1977; Wehtje 2003), 
phylogenetic relationships (DaCosta et al. 2008; Powell et al. 
2008, 2014), and degree of reproductive isolation (Selander 
and Giller 1961; Pratt 1991), underscoring the need for a con-
tiguous high-quality reference genome. However, the avail-
able assembly for Great-tailed Grackles (GCA_013399035.1) 
is relatively fragmented (scaffold N50 = 93.2 kb), and there is 
no genome assembly available for Boat-tailed Grackles.

Here, we announce a contiguous reference genome as-
sembly constructed from tissues of a museum-vouchered 
(Buckner et al. 2021), female Boat-tailed Grackle of the nom-
inate subspecies Q. m. major that we collected in southeast 
Louisiana.

Methods
Biological materials
We collected an adult female Boat-tailed Grackle representing 
the nominate subspecies (Q. m. major) on March 1, 2021 at 
Manchac Wildlife Management Area, St. John the Baptist 
Parish, Louisiana (30.27° N, 90.38° W). We immediately 
(<15 min) preserved pectoral muscle in liquid nitrogen and 
blood in ethanol. We later prepared a museum study skin, 
with associated data, and collected additional tissue samples 
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(muscle, heart, liver, intestines, lungs, stomach contents, iris, 
and eye), and we added these to the Louisiana State University 
Museum of Natural Science ornithology collection (skin 
LSUMZ 230566, tissue B-96265).

Specimen collection was approved as part of LSU IACUC 
Protocol 21-042 and conducted under federal collecting 
permit number MB02467D-0, Louisiana state collecting 
permit number WDP-21-068, and WMA special use permit 
number WL-Research-2020-16.

Nucleic acid library preparation and DNA 
sequencing
We extracted DNA from ~25 mg muscle tissue using a 
MagAttract High Molecular Weight (HMW) DNA Kit 
(Qiagen, Gmbh), and we shipped extracted DNA to the 
University of Maryland School of Medicine Institute 
for Genome Sciences (IGS) for library preparation and 
sequencing. IGS staff performed sample quality control be-
fore shearing the DNA extract, selected sheared fragments 
in the range of 10 to 20 kbp using a BluePippen (Sage 
Science, Inc.), and prepared a SMRTBell library for HiFi 
sequencing. The library was sequenced using two PacBio 
Sequel II 8M SMRT Cell runs to generate circular con-
sensus (HiFi) reads.

After receiving the data from IGS, we used cutadapt (Table 1)  
(Martin 2011) to remove adapter contamination from se-
quence reads, and we generated a temporary assembly 

using hifiasm (Cheng et al. 2021, 2022). Then, we sent 
muscle tissue to Phase Genomics (PG), who prepared a HiC 
(Lieberman-Aiden et al. 2009; Van Berkum et al. 2010) li-
brary from the tissue using their Proximo kit v4.0. PG 
staff performed quality control (QC) of the HiC library 
by generating a small number of reads using an Illumina 
iSeq100 and aligning those reads to the temporary assembly. 
After successful QC, PG Staff sent the library to Azenta Life 
Sciences for deeper, paired-end, 150 bp sequencing using an 
Illumina NovaSeq 6000. After receiving the short-read se-
quence data from PG, we removed adapter contamination 
and trimmed low-quality reads using Trimmomatic (Bolger 
et al. 2014).

Genome assembly and annotation
To estimate genome size, we generated a kmer histogram from 
the HiFi data using meryl (Rhie et al. 2020) and a kmer length 
of 21, and we input the histogram to GenomeScope (Ranallo-
Benavidez et al. 2020). Then, we generated haplotype re-
solved assemblies by inputting the HiFi data and the HiC 
data to hifiasm in HiC partitioned mode. We converted the 
resulting haplotype 1 and 2 assemblies (hap1 and hap2 here-
after) to FASTA format, and we screened each haplotype for 
contaminants using the NCBI Foreign Contamination Screen 
(FCS) (Astashyn et al. 2024) to identify foreign and adapter 
contamination. We computed assembly statistics for each 
haplotype using gfastats (Formenti et al. 2022), and we used 

Fig. 1. Map of the distribution of Boat-tailed Grackle (Quiscalus major) subspecies (Stevenson 1978; Post et al. 2020), with typical eye colors shown 
following Stevenson (1978) and Pratt (1974): pale yellow in Q. m. alabamensis and Q. m. torreyi, dark brown in Q. m. westoni, and variable in the 
nominate Q. m. major. The locality of the reference genome individual is marked with a star. 
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compleasm (Huang and Li 2023) to compute completeness 
statistics with the aves_odb10 database. After checking com-
pleteness, we removed duplicates from each haplotype as-
sembly using purge_dupes (Guan 2022), and we computed 
another round of assembly and completeness statistics with 
gfastats and compleasm. We assembled a mitogenome for Q. 
m. major by inputting the HiFi data to the mitohifi (Uliano-
Silva et al. 2023) container using a Quiscalus mexicanus 
mitogenome (NCBI GenBank MN356197.1) as the refer-
ence, and we used minimap (Li 2018) and custom Python 
(van Rossum 2009) and BioPython (Cock et al. 2009) code 
(see Supplemental Files) to identify and remove contigs 
from the haplotype assemblies that partially or completely 
overlapped the mitogenome. We aligned the trimmed, HiC 
data to each haplotype using bwa (Li and Durbin 2010), 
samtools (Danecek et al. 2021), and Picard (Broad Institute 
2019) within the Arima Genomics Mapping Pipeline (Arima 

Genomics 2019), and we scaffolded each haplotype assembly 
(and produced contact maps) using YaHS (Zhou et al. 2023).

Compleasm suggested that hap2 was the slightly more 
complete assembly, likely because it included the avian 
Z chromosome, so we used minimap2 to align both 
haplotypes to the Zebra Finch (Taeniopygia guttata) ge-
nome (NCBI GCF_003957565.2). Minimap2 results con-
firmed hap2 included a scaffold orthologous to the Zebra 
Finch Z chromosome, and we used RepeatModeler (Flynn 
et al. 2020) within the Dfam Transposable Element Tools 
(TETools) container (Dfam Consortium 2023) to model 
repeats for this haplotype with the DFAM 0th and 3rd 
partitions (Storer et al. 2021) and RepBase Repeat Masker 
libraries v20181026 (Bao et al. 2015). With a custom re-
peat library created, we used RepeatMasker (Smit et al. 
2013) within the TETools container to generate a general 
feature format (GFF) file of repeats for each haplotype, and 

Table 1. List of programs used to assemble and scaffold the Quiscalus major genome.

Assembly Software and options Version

Long-read trimming cutadapt 4.3

Temporary assembly hifiasm 0.15

Short-read trimming trimmomatic 0.39

Kmer histogram meryl 1.4

Genome size estimate GenomeScope 2.0

Haplotype assembly hifiasm 0.19.8

Contamination screen NCBI FCS 0.5.0

Assembly statistics gfastats 1.3.6

Assembly completeness (BUSCO) compleasm 0.2.4

Duplicate removal purge_dupes 1.2.6

Mitogenome assembly mitohifi 3.2.1

Mitogenome contamination removal minimap 2.24-r1122

Mitogenome contamination removal Python 3.9.18

Mitogenome contamination removal BioPython 1.79

Scaffolding

HiC read alignment Arima Mapping Pipeline 02-08-2019

HiC read alignment bwa 0.7.17-r1188

HiC read alignment samtools 1.17

HiC read alignment Picard 2.27.5

Scaffolding YaHS 1.2a.1

Z chromosome identification minimap 2.24-r1122

Annotation

Repeat modeling Dfam TETools Container 1.88

Repeat masking Dfam TETools Container 1.88

Soft-masking scaffolds Bedtools 2.30.0

Gene annotation Braker3 container 3.0.7

GTF to GFF conversion agat container 1.0.0

GFF sanitization GFFtk 0.1.7

Functional annotation interproscan 5.66-98.0

Functional annotation eggNOG-mapper 2.1.11

Annotation integration funannotate container 1.8.15

Final assembly statistics

Assembly statistics gfastats 1.3.6

Assembly completeness (BUSCO) compleasm 0.2.4

Assembly completeness (kmer) merqury 1.3
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Table 2. Assembly statistics and completeness at different stages of the process (white background), and for the final assemblies submitted to the 
NCBI (gray background).

Haplotype 1
(contigs, pre-purge)

Haplotype 1
(contigs, post-purge)

Haplotype 1
(scaffolds)

Haplotype 2
(contigs, pre-purge)

Haplotype 2
(contigs, post-purge)

Haplotype 2
(scaffolds)

# scaffolds 1,732 1,068 401 1,659 1,139 385

Total scaffold 
length

1,079,634,103 1,004,708,711 1,004,317,150 1,202,340,140 1,090,522,921 1,090,631,418

Average scaffold 
length

623,345 940,738 2,504,532 724,738 957,439 2,832,809

Scaffold N50 3,000,474 3,214,539 70,945,146 2,745,311 3,130,792 70,258,100

Scaffold auN 4,405,444 4,683,967 72,153,392 4,113,045 4,431,783 71,588,675

Scaffold L50 95 83 5 108 90 6

Largest scaffold 20,784,452 20,784,452 151,780,972 16,326,315 16,326,315 153,946,839

Smallest scaffold 6,775 9,537 1,000 9,988 11,184 1,000

# contigs 1,732 1,068 1,066 1,659 1,139 1,163

Total contig 
length

1,079,634,103 1,004,708,711 1,004,184,150 1,202,340,140 1,090,522,921 1,090,475,818

Average contig 
length

623,345 940,738 942,011 724,738 957,439 937,640

Contig N50 3,000,474 3,214,539 3,214,539 2,745,311 3,130,792 3,072,548

Contig auN 4,405,444 4,683,967 4,677,973 4,113,045 4,431,783 4,395,166

Contig L50 95 83 83 108 90 91

Largest contig 20,784,452 20,784,452 20,784,452 16,326,315 16,326,315 16,326,315

Smallest contig 6,775 9,537 1,000 9,988 11,184 1,000

# gaps in 
scaffolds

0 0 665 0 0 778

Total gap length 
in scaffolds

0 0 133,000 0 0 155,600

Average gap 
length in scaffolds

0 0 200 0 0 200

Gap N50 in 
scaffolds

0 0 200 0 0 200

Gap auN in 
scaffolds

0 0 200 0 0 200

Gap L50 in 
scaffolds

0 0 333 0 0 389

Largest gap in 
scaffolds

0 0 200 0 0 200

Smallest gap in 
scaffolds

0 0 200 0 0 200

GC content % 43 43 43 43 43 43

# soft-masked 
bases

0 0 118,046,428 0 0 145,310,361

# segments 1,732 1,068 1,066 1,659 1,139 1,163

Total segment 
length

1,079,634,103 1,004,708,711 1,004,184,150 1,202,340,140 1,090,522,921 1,090,475,818

Average segment 
length

623,345 940,738 942,011 724,738 957,439 937,640

# gaps 0 0 665 0 0 778

# paths 1,732 1,068 401 1,659 1,139 385

Compleasm 
results

Single copy com-
plete genes

S:94.77%, 7902 S:94.75%, 7900 S:94.96%, 
7918

S:98.78%, 8236 S:98.86%, 8243 S:99.00%, 
8255

Duplicated com-
plete genes

D:0.20%, 17 D:0.17%, 14 D:0.14%, 12 D:0.28%, 23 D:0.16%, 13 D:0.16%, 13

Fragmented 
genes, subclass 1

F:0.60%, 50 F:0.59%, 49 F:0.42%, 35 F:0.36%, 30 F:0.36%, 30 F:0.26%, 22
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we soft-masked repeats in each using bedtools (Quinlan 
and Hall 2010).

After masking, we conducted ab initio annotation of hap2 
using the Braker3 container (Lomsadze 2005; Stanke et al. 
2006, 2008; Gotoh 2008; Iwata and Gotoh 2012; Buchfink 
et al. 2015; Hoff et al. 2016, 2019; Brůna et al. 2020, 2021; 
Gabriel et al. 2021) with the OrthoDB11 Vertebrata data set 
(downloaded 2 August 2023) (Kuznetsov et al. 2023), we 
converted the Braker GTF file to GFF using the agat (Dainat 
2022) container, and we sanitized the resulting GFF using 
gfftk (Chen et al. 2019). We generated functional annotations 
for the predicted genes/transcripts using interproscan (Jones 
et al. 2014) and eggNOG-mapper (Huerta-Cepas et al. 2019; 
Buchfink et al. 2021; Cantalapiedra et al. 2021), and we inte-
grated both sources of functional annotation information to 
the braker GTF file using the funannotate container (Palmer 
2023).

We added the mitochondrial contig assembled with mitohifi 
to the hap2 assembly, and we computed a final round of as-
sembly statistics and BUSCO completeness for each haplotype 

using gfastats and compleasm, in addition to estimating kmer 
completeness for both haplotypes using merqury (Rhie et al. 
2020).

Results
Two PacBio Sequel II runs produced a total of 2.85e6 HiFi 
reads having an average length of 9.5 kbp and totaling 
27.1e9 HiFi bases, and we processed these files individually 
with cutadapt to remove a total of 1,958 reads containing 
adapters. We discarded the temporary assembly that was used 
to perform quality control of the HiC sequencing library. 
Illumina sequencing of the HiC library produced 817.5 M 
read pairs, and 793.8 M reads pairs remained after trimming. 
GenomeScope2 estimated that the (maximum) haploid length 
of the Q. m. major genome was 1.13e9, suggesting that the 
realized HiFi coverage of the genome was approximately 24x.

The HiC partitioned mode of assembly in hifiasm produced 
haplotype assemblies that did not contain identifiable foreign- or  
adapter-contamination. Both haplotypes were relatively 

Haplotype 1
(contigs, pre-purge)

Haplotype 1
(contigs, post-purge)

Haplotype 1
(scaffolds)

Haplotype 2
(contigs, pre-purge)

Haplotype 2
(contigs, post-purge)

Haplotype 2
(scaffolds)

Fragmented 
genes, subclass 2

I:0.00%, 0 I:0.00%, 0 I:0.00%, 0 I:0.01%, 1 I:0.01%, 1 I:0.00%, 0

Missing genes M:4.43%, 369 M:4.50%, 375 M:4.47%, 373 M:0.58%, 48 M:0.61%, 51 M:0.58%, 48

Total genes (aves_
odb10)

N:8338 N:8338 N:8338 N:8338 N:8338 N:8338

Merqury com-
pleteness

87.70% 93.65%

Table 2. Continued

Fig. 2. Contact maps of the haplotype 1 (A) and haplotype 2 (B) assemblies after scaffolding with YaHS.
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contiguous and complete (Table 2). Because compleasm results 
indicated that there were a small number of apparently dupli-
cate contigs, we ran purge_dupes on each of the haplotype 
assemblies, removing 664 contigs from hap1 and 520 contigs 
from hap2. This reduced the number of putatively duplicate 
BUSCOs in each assembly while slightly decreasing the number 
of complete, single-copy orthologs for hap1 and increasing the 
number of complete, single-copy orthologs for hap2 (Table 
2). We assembled a mitochondrial genome sequence for Q. m. 
major that was 16,769 bp in length, circular, and included 37 
mitochondrial genes. We used the mtDNA genome assembly 
to identify and remove 16 additional contigs from hap1 and 
one contig from hap2 because these contigs partially/entirely 
overlapped with the mitochondrial genome. Mapping reads 
from the HiC library to each haplotype assembly produced a 
total of 199 M and 123 M intra-contig read pairs (219 M/233 
M inter-contig) for hap1 and hap2 (Supplementary Table S2), 
and yahs significantly increased the contiguity of each as-
sembly, while slightly increasing the BUSCO assembly com-
pleteness (Table 2, Fig. 2). Assembly completeness estimated 
by merqury was 87.7% for hap1, 93.6% for hap2, and 98.6% 
for both haplotypes considered together.

The final version of hap1, bQuiMaj1.hap1, included 
401 scaffolds having a total length of 1.0 Gbp, an N50 of 
70.9 Mbp, and an L50 of 5, while the final version of hap2, 
bQuiMaj1.hap2, included 385 scaffolds having a total 
length of 1.1 Gbp, an N50 of 70.3 Mbp, and an L50 of 6. 
Repetitive elements comprised ~10-12% of the assembly, and 
a majority of these were either retroelements or unclassified 
(Supplementary Table S2). Braker3 identified 40,525 puta-
tive genes producing 43,069 predicted transcripts (including 
isoforms), and our annotation procedures assigned functional 
information to 9665 (22%) of these genes.

Discussion
The haplotype assemblies we produced are among the most 
contiguous for the family Icteridae and will facilitate future ge-
nomic studies in the clade, which comprises over 100 species 
inhabiting the Americas. In particular, the Boat-tailed/Great-
tailed Grackle complex is a promising system for studying the 
genomics of reproductive isolation in recently-diverged species 
pairs (Selander and Giller 1961; Avise and Zink 1988; Pratt 
1991; DaCosta et al. 2008), as well as the genetic basis of 
rapid evolutionary changes in eye color (Pratt 1974; Stevenson 
1978; Corbett et al. 2024). This high-quality reference ge-
nome will aid future work using short-read sequencing, such as 
phylogeographic and population genetic analyses with reduced-
representation data, as well as whole-genome resequencing 
approaches to identify loci underlying phenotypic variation.

Supplementary Material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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